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Abstract—Triangular finite element models are presented for the large displacement bending and post-
buckling analysis of thin plates. The formulation is based upon a general variational theory which offers a
wide scope for the selection of valid finite element trial functions. This makes it feasible to model the
particular physical actions crucial to the successful calculation of large displacement behaviour. In this
paper it is demonstrated by numerical examples that a notable improvement in performance is achieved,
without a significant increase in computational effort, when simple inextensional bending deformations are
included explicitly in the finite element trial functions.

NOTATION

a; six rigid body movements of a plate
g, amplitude of eigenvector in eqn (5-10)
A area of a plate
B, C matrices defined in eqns (3-35)
D flexural rigidity of a plate, defined in eqn (6-2)
;1. €3, €, constant membrane strains
E Young's modulus .
E, E, E, E, components of the special column vectors E and E
f quartic polynomial, defined in eqn (5-2)
F nonlinear energy function, defined in eqn (5-4)
8., 82 column vectors of generalized displacements for bending and stretching actions, defined in eqns (3-30) and
(3-34)
G,. Gy column vectors of generalized forces for bending and stretching actions, defined in eqns (3-28) and (3-32)
h thickness of a plate
hyw coeflicients of quartic polynomial. defined in eqn (5-2)
H,.. Hgy matrices defined in eqns (4-1)
I,. I defined in eqns (3-24)
ky,. kyy, kj; constant curvatures and twist
K, Kirchhoff shear force
K%K ; elements of linear elastic and geometric stiffness matrices
K7 elements of matrix defined in eqn (5-8)
l;; length of side 12 of a finite element
L, column vector defined in egn (4-2)
M, M, M,, Cartesian components of bending and twisting moments
M,, M,, normal bending moment and twisting moment
Mgz  matrix defined in eqn (4-12),
n.t normal and tangential coordinates at a plate edge
N, N, N,, Cartesian components of stress resultants
N,. N,, normal and tangential components of stress resultants
Nps matrix defined in eqn (4-2)
Ny total number of bending degrees-of-freedom x;
p% prescribed normal pressure on a plate
P* column vector defined in eqn (4-3)
P, column vector defined in eqn (3-8)
q.-9s column vectors containing the connection quantities for bending and stretching actions, defined in eqns
3-7
Ry Kirchhoff force resultant at a corner point N
R, column vector defined in eqn (4-12),
s coordinate measured along a plate edge or around a finite element boundary

S. T matrices defined in eqns (4-5)
U, V, W components of displacement in the x, y, z directions
U,. U, normal and tangential components of U, V displacements

V, total shear force, defined in eqn (2-9)
W, normal displacement at a corner point N
x, ¥,z rectangular Cartesian coordinates
x; bending degrees-of-freedom for a finite element mesh
x? starting values of x; for post-buckling analysis
X*, Y* oprescribed body forces in the plane of a plate
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738 D. 1. ALLman

Greek symbols
a.8 column vectors containing the coefficients of the assumed bending and twisting moments and the assumed
stress resultants, defined in egns (3-36)

12 angle between the exterior normal and the x direction on the side 12 of a finite element
I’ defined in eqn (4-12)
A area of a triangular element

€. €, ¥, Cartesian components of strain

1 eigenvector corresponding to initial buckling mode

6, normal rotation (= ~ (W an))
x principal curvature, defined in eqns (3-5)

Ky, Ky Ky Cartesian components of curvature and twist

A defined in eqn (4-2)

¢ intensity of applied membrane loading
v Poisson’s ratio )

&, &, &  triangular coordinates, defined in eqn (3-10)
Iize generalized complementary energy functional for a complete plate

n, generalized complementary energy functional for a single finite element
p constant coefficient in iterative method

¢ angle between generators and x direction

) potential function for prescribed body forces X*, Y*

Script symbols
B matrix defined in eqn (2-5)
% total boundary of a finite element
k. 6r parts of a plate edge or finite element boundary subjected to kinematic or traction conditions
F ¥ matrices containing the elastic and geometric properties of a plate for bending and stretching action
respectively

Subscripts
a, 8 refers to bending and stretching action respectively
e refers to the eth finite element
i k{1 dummy suffices
N refers to corner point of a finite element

Superscripts
r iteration counter
T transpose of a matrix or vector
* prescribed value or exact value
~ variable defined as a function of s only

Special column vectors

E= (EEE,)
E= (EEE)
= (MxMny_v)T
= (N.NNT
P‘ = (X* Y‘p:)r
R. = (NnNmRNVaMn)T
R= (NaNsrRNKnMR)T
R*= (NINLRAVIMYT
U= (vwr
U= (U,UwWWws,)
U= (UKUsWhHW*gs)T
0= (aWaw\T
( ax dy )

L. INTRODUCTION

Thin plate components are frequently employed in the construction of modern aerospace
structures. Indeed, many applications of new lightweight materials such as carbon fibre
reinforced plastic involve the use of rather thin laminates. Now, the bending behaviour of thin
plates under normal loading shows a marked departure from the prediction of the linear
theory[1,2] for small normal displacements. Moreover, it is weli-known that under plane
compression or shear loadings there is often quite adequate stiffness for structural requirements
long after initial buckling has occurred. The present paper is concerned with the development
of finite element models for accurate analysis of the class of plate problems covered by the
nonlinear theory of von Kirman([3]. The approach is therefore restricted to situations where the
angles of rotation of the plate mid-surface are small compared to unity, but this is not too
severe a limitation in practice because normal displacements several times larger than the plate
thickness are permitted; bending with larger normal displacements than this is, in any case,
unacceptable in typical aircraft structures.
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The finite element models which are presented in the paper employ separate trial functions
for the stress resultants, stress couples and displacements of a plate. This concept was first
introduced by Pian in his “hybrid stress™ formulation for plane stress analysis[4] which he later
extended to the small displacement bending analysis of plates[5], rectangular elements being
used in both cases. Triangular finite elements for the plate bending problem using the hybrid
stress formulation are given by Allman[6). The method is an application of a variational
principle in which the stresses are constrained to satisfy the equations of equilibrium inside an
element and the displacements are defined as a one-dimensional compatible distribution on the
element boundary. This latter feature avoids the algebraic complications encountered in defining
two-dimensional normal displacement fields with continuous first derivatives as required for valid
applications of the traditional displacement method to plate bending problems.

An spplication of the hybrid stress method to the analysis of initial buckling of plates is
given by Tabarrok and Gass{7]. Their results are obtained using rectangular elements for square
plates under uniform plane loadings, but it is reported that the method is prone to matrix
singularities under certain conditions. It also requires the numerical solution of a nonlinear
eigenvalue problem. By contrast, an alternative finite element analysis for plate buckling,
presented by Allman[8), is well behaved in all instances and presents a conventional linear
eigenvalue problem for calculation of the elastic buckling loads. The formulation is not a
standard hybrid stress model because only the linear part of the normal equilibrium equation is
satisfied exactly inside an element. Nevertheless, the approach is rigorously based upon a
variational principle for stresses and displacements. It is found to give reliable and accurate
results in extensive applications with triangular elements[9]. A comparison of this type of finite
element mode! with the standard hybrid stress model is undertaken by Boland and Pian{[10] in
their large deflection analysis of thin elastic arches and shells. They conclude that the two
models yield essentially the same resuits.

The present paper develops improved finite element models for the large dispiacement
bending and post-buckling analysis of thin plates. It is shown in Section 2 that these models are
based upon a variational theory[11] for large displacement bending which includes, as special
cases, the variational principles used for the finite element analysis of small displacement
bending[6) and initial buckling[8] of plates. The formulation is free from restrictive subsidiary
conditions on the stress and displacement variables, thus offering a wide scope for the selection
of finite element trial functions to model the particular physical actions identified{12] as crucial
to the successful calculation of large displacement behaviour. Indeed. it is shown in Section 3.2
that basic trial functions, which are selected to recover exactly the rigid body movements and
constant states of membrane strain, can also be easily augmented to allow exact recovery of
simple inextensional bending deformations. These modes of deformation are considered to have
an important influence on the convergence of finite element approximations to the exact
solution with successive mesh refinement. Further developments to deal with more complicated
types of physical action, such as boundary layer effects, also appear to be feasible using this
type of approach. Some alternative variational formulations for large deformation analysis of
plates are given by Tabarrok and Dost[19).

A “basic” triangular finite element model, with simple polynomial expansions for the trial
functions, is presented in Section 4.1. The relevant trial functions are given in Section 3.1 and
they correspond exactly to those used previously in the finite element schemes for buckling
analysis{8, 9] and large deflection analysis[10]. Accordingly, it is assumed that the membrane
stress resultants are constant and the bending and twisting moments are linear. This ensures
satisfaction of the homogeneous plane equilibrium equations and the linear part of the equation
of normal equilibrium. The normal displacements are cubic polynomials where, to avoid
difficuities concerning boundary compatibility, separate assumptions are made for the dis-
tribution inside each element and on the element boundary, as in the standard hybrid stress
model. The membrane displacements are also defined separately inside an element and on the
element boundary; they are linear functions. The basic finite element model has five nodal
connection quantities defined at each of the element corners, viz the normal displacement and
its two first derivatives and the two components of membrane displacement.

New finite element models which permit exact recovery of simple inextensional bending
behaviour are presented in Sections 4.2 and 4.3. They are denoted in the text as an “augmented
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displacements model” and an “‘equilibrium model for stretching” respectively. The augmented
displacements model is the more efficient for numerical computation; it has nodal connection
quantities located at the element corners which are identical to the basic model described
above. The equilibrium model requires nodal connection quantities on the element sides,
thereby increasing the number of equations involved in a numerical solution. This approach is
less attractive for practical applications and no results are presented here.

A selection of numerical examples is given in Section 6 which enables a comparison to be
made between the basic finite element model and the augmented displacements model. The
examples cover various kinds of elastic behaviour typical of the large displacement bending and
post-buckling of thin plates. It is found that there is a notable improvement in the performance
of the augmented displacements model over that of the basic model which is a direct
consequence of including simple inextensional bending deformations in the finite element trial
functions. Yet there is no significant increase in the computational effort required for a
numerical solution when this feature is incorporated in the analysis. The examples also show
that the basic model has an undesirable sensitivity to some finite element mesh arrangements
and its convergence characteristics are often poor; indeed, completely unacceptable results are
obtained in one instance. By contrast, in all cases where the effect of refining the finite element
mesh is investigated, the results from the augmented displacements model exhibit rapid and
smooth convergence to the final solution. This provides a first validation of the fundamental
requirements proposed [12] for accurate finite element analysis of nonlinear elastic plate bending.

2. VARIATIONAL THEORY FOR FINITE ELEMENT ANALYSIS

The finite element analysis is based upon a general variational theory[11] for the large
displacement bending behaviour of thin plates. The method of solution involves finding the
stationary values of a generalized complementary energy functional which employs separately
assumed fields for the stress resultants, stress couples and displacements of a plate. For
convenience of application, the complementary energy functional is expressed in a concise way
using a matrix notation with special column vectors defined for the field variables as follows:

Functions of x and y Functions of s
U=(UVW)', U=(U,0,W,Wg,)",
0= (2 22), U = (USUTWEW* 82",
M=(MMM,), R=(N,N.RvV .M,
N=(N,N,N,,)", R = (NN RWK M),
p* = (X*Y*pY), R* = (NANLRAVEMHT. (21

The rectangular Cartesian coordinates x, y. z form a right-handed set, where x and y are in the
plane of the plate, and the coordinate s is measured along the edge of the plate. Variables like
W in the ieft-hand list of eqns (2-1) are functions of the coordinates x and y, whereas variables
like W in the right-hand list are functions of the coordinate s. The following convention is
adhered to throughout the paper: quantities marked with a tilde are defined on a plate edge or
on a finite element boundary only; prescribed quantities are marked with an asterisk; the
superscript T denotes the transpose of a matrix or vector. Two additional special column
vectors are also required, viz:

- T
E=(E,E,E,) } 2:2)

E=(EEE).
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whose components are

E =N N, l

¥ oax 9y’

g - e, oM

y 2-3)

W ( w aW)

E=E+y ( ‘ax + Ny ay) ay N, ay+N” ax

= a’M M,

E.= “oxt ay

A complete list of the symbols used in the text is given in the Notation.

Adopting the above conventions, the generalized complementary energy functional(11] for
finite element analysis of a plate of area A, with kinematic conditions prescribed on the part €,
of its edge and applied tractions on the part € of its edge, is written concisely as

HFE=£!IMTXMdA+§IINT§NdA+£IforQOdA—IRrU‘ds
A A A <,
+II (E+p*)UdA - f (R-R*)7Uds. (24)
A <

The components of the matrices # and ¥ contain the elastic and geometric properties of the
plate relevant to the bending and stretching actions respectively. The matrix ® is given by

- N, ny]
R = [ N, NI 2-5)

We now consider that the functional of eqn (2-4) applies to a single triangular element of
area A which forms part of a finite element mesh completely covering the whole plate. The
boundary € of the element is assumed to consist of two parts, denoted €, and €; as above,
where displacements and tractions are prescribed respectively. The part of the element
boundary %r is taken to include the boundaries common to adjacent elements inside the plate
on the basis that they are also concerned with the transmission of tractions. The contribution of
a single element to the total functional for the plate is therefore

=§IIMT%MdA+%IINT§NdA+§II0’90dA-§RTl'st
A a A <
+ I R*TUds + f f (E+p*)TUdA + I R7(U - U*)s, 2-6)
a «

where the coordinate s is measured anti-clockwise around the element boundary €.

The functional for a standard hybrid stress model follows from eqn (2-6) by selecting finite
element trial functions which satisfy the differential equations of equilibrium inside the element
and the prescribed displacement conditions on the element boundary, i.e.

E+p*=0 inA

s 2-7
U=U* on€ @7
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However, the choice of suitable trial functions to satisfy the first of eqns (2-7) presents some
difficulties (see Tabarrok and Gass[7]) and it is preferable to follow the alternative approach
first adopted for initial buckling[8, 9]. We require the Green’s formula

HETUdA=”ETdA~” 07Bo dA +§(N,%‘:’—+N,,%':-f)was (2-8)
A A A <€

and we recall[11] that the total shear force along a boundary is

NJW

aw
Vnan+Nn_£+ ME'

9

where K, is the Kirchhoff shear force. Introducing the column vectors R and E defined in eqns
(2-1) and (2-2) and using eqns (2-8) and (2-9), an alternative form for eqn (2-6) is found to be

n,=§”MT3erA+%”NT§NdA—gﬂoTQodA-§inst
a a a €

+ f R”ilds+f[(i‘,+p*)TUdA+ [ RT(U-U*ds

7 3 $x
aw aw .
+§ (N,, LAY -5;—)< W - W)ds. 2-10)
<

Equation (2-10) is reduced to its simplest form by selecting finite element trial functions which
satisfy the constraint equations

=U* on <gx, 2-11)

The result of this reduction is

n,=5[IMT%MdA+%IINT§NdA—§jIOTQBdA-fﬁ’ﬁds
A 3 A €

+ f R*"0ds +”p*TUdA. (2-12)
A

€7

The variational functional used in the present paper for the finite element analysis of the
large displacement bending and post-buckling of thin plates is obtained by summing over all the
elements the quantities m, given in eqn (2-12). This equation also reduces either to the
functional previously used for the finite element analysis of the smail displacement bending of
plates[6] if we put N=0 and X*= Y*=0, or to the functional used for the finite clement
analysis of plate buckling(8, 9] if we take the components of N as prescribed quantities together
with p* = 0.

3. FINITE ELEMENT IDEALIZATION
The successful calculation of the nonlinear elastic bending and post-buckling of thin plates
requires a finite element idealization which can represent satisfactorily the specific physical
actions associated with large displacement behaviour. These include rigid body movements,
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simple states of stretching and bending and boundary layer effects. Some of the problems in
selecting suitable trial functions are noted in a previous publication[12]. In particular, it is
conjectured that an important criterion for the trial functions is to recover exactly all
deformation states involving only constant values of strain, curvature and twist. This is
proposed as a practical requirement for accurate finite element analysis if mesh idealizations of
a convenient size are to be used to best advantage. It is an extension of the well-known
*‘constant strain” criterion in linear elasticity which is often stated [13] as a necessary condition
for convergence to the exact solution with refinement of the finite element mesh.

Consider the large displacement bending of a thin plate. The membrane strains ¢,, €, and v,,
are calculated from the membrane displacements U and V and normal displacement W by the
nonlinear relationships

-2, (W
-5
1/8W
-1
i 6y+2( ) @b
v ol aW&W
Yar = ax+ay+ax dy’

In the case of inextensional bending the membrane strains are zero and it follows that the
normal displacement W satisfies an equation obtained by eliminating U and V from egn (3-1),
viz:

(12—“—’)2 rWIW (3-2)

axdy ax ay

This is the equation of a developable surface. The curvatures «,, x, and twist «,, are obtained
from the normal displacements using the equations

__¥W
K ax’’
W
- 3.3
KY ay L] ( )
. =_3W
e axay’

They are independent of the membrane strains provided eqn (3-2) holds, i.e.

ki, ~ Kk, =0, (3-4)

The general solution of eqn (3-4) is a two-parameter family of curvatures and twist

& = x sin’ ¢,
x, = k cos® &, (3-5)
Ky = K Sin ¢ cos ¢,

where ¢ is the angle between the generators of the associated developable surface and the
x-axis (see Ref. [11]) and where « is the non-zero principal curvature.
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It follows from Ref. [12] that all admissible states of constant strain, curvature and twist are
obtained from the following polynomial distributions of normal displacement W and membrane
displacement U, V viz:
W = g+ ayx + ayy = §(kx* + 2k xy + kny?),
U = a,+ (e, - 3a,0)x + [as + Hey; — azan)ly + 1a5(ky x7 + 2kioxy + ko y?)

— & (k3% 4 3ky kyaxy + 3kirxy? + kykyy?), (3-6)

V= ag— [as - iej; — a1a3))x + (€~ 30,))y +4ay(ky x° + 2kipxy + knpy?)

= § (Kyyky2x® 4 3k3x%y + 3kpokpoxy® + kyy?),

where ¢, €, €, are independent constant membrane strains and where k,, k;; are in-
dependent constant curvatures with the constant twist k;, = = v/(k; k) to ensure satisfaction
of the inextensional condition of eqn (3-2). The coefficients a; (i = 1, ..., 6) characterize the six
rigid body movements of the plate.

It is difficult to devise an exhaustive series of simple tests to verify that the trial functions of
a finite element model can represent the polynomial displacements of eqns (3-6), because many
of the terms are quadratic in the coefficients a;, e; and k;. However, a useful practical
procedure to test that all the terms with linear coefficients are included in the trial functions is
to attempt to recover the six rigid body movements of a plate and the six unit deformation
states defined in the following Table:

Table 1.
Components of strain, curvature
and twist
Unit
states € €, Yey [ X, Ky, Mode of deformation
1 1 0 0 0 0 0
2 0 1 0 0 0 0  Pure stretching
3 0 0 1 0 0 0
4 0 1] 0 i 0 0
b 0 0 0 0 1 0  Inextensional bending
6 0 0 0 i 1 =1

Unit deformation states 1, 2 and 3 relate to the familiar constant strain criterion of linear
elasticity associated with pure stretching action. Unit deformation states 4, S and 6 are obtained
from eqns (3-5) with x =1, 1, 2 and ¢ = 7/2, 0, * n/4 respectively; exact recovery of these
inextensional bending actions is a necessary condition for the trial functions to represent any
state of constant curvature and twist independently from the membrane strains.

3.1 Basic trial functions

The basic finite element trial functions are selected to satisfy the constraint equations (2-11).
They correspond exactly to those used previously for the analysis of plate buckiing{8, 9} and
large deflections of thin elastic structures[10]. Separate assumptions are made for the mem-
brane stress resultants, the bending and twisting moments and the normal and membrane
displacements. All displacements are defined separately inside each element and on the element
boundary.

The connection quantities are taken as the values of displacements and derivatives at the
corners of a triangular element. This gives the most efficient computational topology for a finite
element scheme. The connection quantities are the components of the column vectors

oW, oW, W, aW, aw,aw,)’ ;
= A AL N TRCAL RALL R il SRS ) Y
Qe (W' ax 3y W, x dy ° dx dy } (3-7)

g5 = (U, V, U, VL Uy V)T, !
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where the subscripts 1, 2, 3 refer to the values at the three corners of a triangle with coordinates
(X1, Y1), (X2, ¥2) and (x,, y;) respectively. The displacement constraint in eqn (2.11), is enforced
by prescribing the values of the connection quantities on the boundary €.
The interior normal displacement W(x, y) is defined as
W=PTq., (3-8)

where the nine components of the vector P, are the cubic polynomials used by Bazeley et al.
{14). The first three components of this vector are written as

P'=§+ 826+ 676 685 - &6
P.l=(x;- ;&6 +6.68) - (1 - xHEE + 10166, (39
P} =(y1- y &6+ 16.68) - (1 — pNEET +1668),

where the triangular coordinates are
& I (X293~ x352) (2= y3) (x3— )71
&|=35|ENn—xn) (B=-yn) (n-x)jx| (3-10)
3] (Kiy2=x29) (11— y) (x—x))

The remaining six components of the vector P, are found by cyclic permutation of the
subscripts 1, 2, 3. The normal displacement on the typical element side 1 +2 of length /;; is
assumed to be

4

oo sV o (s) s\ (s)’ (s)‘]aWl
W(s)-[1—3(m) +2(E) ]W‘”"[(E) 2(£) +(E) ] 5
& -2(2) w1 (2) - () ] 5
+[3(E) 200wl () - (1) ] 5 G-1h
and the derivative in the direction n of the outward normal to the side is taken as

W (-5 (i)s’.‘l
on (S)_(] 112) an * l|3 an’ (3-12)

The directional derivatives in eqns (3-11) and (3-12) are given by

g Sin y12 2 + o8 y12 =

35 "2 ax R4 ay"

2. cos +sin 2 e
on Y2 F) Y2 (?_\" I

where the angle v, lies between the direction n and the x-axis.

The trial functions assumed in eqns (3-11) and (3-12) for the normal displacement W and the
normal derivative dW/an are expressed in terms of the vector of connection quantities g, given
in eqn (3-7), using eqns (3-13). This ensures satisfaction of the compatibility condition W = W
for the cubic normal displacement on an element boundary €, as required by the constraint eqn
(2-11);. But the linear normal derivative 3W/an is not compatible with the quadratic distribution
which is calculated from the interior normal displacement defined in eqn (3-8). Compatibility of
normal derivatives is satisfied as a “best-fit"” by virtue of the generalized variational principle,
given in Ref. [11], which is used to formulate the variational equations in Section 4.
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The bending and twisting moments are assumed to be linear functions with coefficients «;
(i=1,...,9:

M, = a; + a,x + a3y,
My =a,t+ asx + gy,
Mxy =a;t+ agX + ayy, (3-14)

which clearly satisfy the required constraint condition (2-11),.

The above choice for the trial functions to represent the bending action of a plate is a
well-tried combination already used for the analysis of the small displacement bending[6] and
buckling[8, 9] of plates. It ensures that the finite element model is free from spurious kinematic
modes[15, 16]. Moreover, this combination of trial functions can represent exactly a general
quadratic distribution of normal displacement. In the context of small displacement theory this
idealization can recover any state of constant curvature and twist. However, the successful
recovery of unit deformation states 4-6 in Table 1 for constant curvatures and twist associated
with large displacement bending requires a careful selection of trial functions for the stretching
action.

Here, the basic trial functions for stretching are chosen to give the simplest finite element
idealization without regard for the exact recovery of any deformation state with constant
curvatures and twist. The interior displacements U(x, y), V(x, y) are taken as linear functions

62 888 e

where £ are the triangular coordinates defined in eqn (3-10) and g, is the vector of connection

quantities in eqn (3-7),. The boundary displacements U,(s), U(s) in the directions of the
outward normal n and the tangent ¢ are defined along the typical side 1 +2 as

b= (1-£) e (D

) ] s (3-16)
oo =(1-1) v, + () s
At node 1, the quantities U, and U, are transformed by
U, =cos vy Uy +sin yn V,
: Yl Y ¥,y 3-17)

U, = =sin ypUy +cos vV,

where the displacements U, and V| are components of the vector of connection quantities q,.
The interior membrane displacement and the boundary displacements are therefore compatible
at the element boundary.

The trail functions for the stress resultants are assumed to have constant values 8; (i = 1,2, 3),
viz:

Nx = ﬁh
N, =By, (3-18)
ny = 33'

thus satisfying the constraint eqn (2-11),.

Of course, this type of idealization for the stretching action with compatible linear
membrane displacements and constant stress resultants is tantamount to using the well-known
“constant strain triangle”. But the present formulation is most convenient for subsequent
developments in this paper where the boundary displacements are adapted to permit recovery
of the polynomial distributions defined in eqn (3-6).
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The particular physical actions which can be represented exactly by the basic finite element
trial functions involve linear distributions of normal and membrane displacements. They are
itemized as follows:

(1) two rigid body displacements and a rigid body rotation in the plane of a plate,

(2) a rigid body displacement and two rigid body rotations associated with movements
normal to the plane of a plate,

(3) three independent constant states of membrane strain.

It is emphasized that a finite element model employing the above basic trial functions cannot
represent constant states of curvature and twist which are independent of the membrane
strains. It fails the test procedure described in Section 3 because the unit deformation states 4, §
and 6 of Table 1 cannot be recovered exactly.

3.2 Augmented membrane displacements

It is necessary for the displacement trial functions to represent exactly the polynomials of
eqn (3-6) in order to recover all admissible states of constant strain, curvature and twist. While
it is clear that the trial functions for the normal displacement in eqns (3-8), (3-11) and (3-12) are
adequate in this respect, it is equally clear that those for the membrane displacements in eqns
(3-15) and (3-16) are inadequate. The latter must be replaced by new expressions which include
the cubic polynomials of eqns (3-6), and (3-6);. But it is known[12] that there are undesirable
algebraic difficulties in deriving two-dimensional cubic trial functions for the membrane
displacements. Fortunately, trial functions for the interior membrane displacements U and V
are required only if there are prescribed body forces X* and Y* in eqn (2-12); and these can be
satisfactorily dealt with by the alternative methods described in Section 3.4. It is therefore
sufficient to address the simpler problem of augmenting the one-dimensional linear distributions
of membrane displacement given in eqns (3-16).

Consider a line, lying in the (x, y) plane of a plate, which is orientated along the y-axis so
that the x-axis is the direction of the normal to the line. We assume that the membrane strains
are constant and we solve eqns (3-1) for the membrane displacements U and V in the following
way: differentiate eqn (3-1), with respect to x and eqn (3-1); with respect to y to obtain

a’v+awa’w
axdy dy dxdy
ra4 32U aw iw aWa’w

axay oy’ T ay axay | ax ayl =0, (3-19)
and subtract these two equations to give
U W 3*W
e Tt o T =0, (3-20)

Equations (3-20) and (3-1), therefore define U and V as functions of y along the line in terms of
the normal displacement W and its normal derivative dW/dx. Now, if the line is taken to
coincide with a side of a triangular finite element, it follows that the boundary displacements
U.(s), U.(s) and W(s) which permit constant strains to exist independently of the bending
deformations satisfy the equations

U+3W32W
357 on dst

a5 -

where C is a constant strain along the element side and where n and s are the coordinates in
the directions of the exterior normal and the tangent respccuvely Equations (3-21) are easily
integrated to determine the membrane displacements U, and U, corresponding to any line
distribution of normal displacement W and normal derivative 3W/an. In particular, for constant
curvatures and twist, the normal derivative is given by eqn (3-12) and the first and second

=0,
321
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derivatives with respect to s are given by

(1) e 1) 2
3s Ly h,

& W=_i(2!’_n_ﬂ"_z)
W das as

(3-22)
la

where the suffices 1 and 2 refer to the ends of the typical side 1—2. Integration of eqn (3-21)
and evaluation of the three constants of integration, together with the constant C, in terms of
the end-values then provides the augmented membrane displacements on the element boun-
dary:

’u l|2 6 '|2 ’lZ on on
+(?L"z-2_%)(i)](ﬂz_awn)
on n /\l; as as /)
- (-2 (o5 -6 2)
Uis) (‘ 1.,)”"+ 1.;)”'2*6 WAL L Carrai
oW, W) (1)) (aW_gW)
(as as J\I,J)\as  as ) 3-23)

These are expressed in terms of the connection quantities in eqns (3-7) using the trans-
formations of eqns (3-13) and (3-17).

When eqns (3-23) are used for the membrane boundary displacements, instead of eqns
(3-16), the resulting finite element model can recover all states of constant strain, curvature and
twist associated with eqns (3-6). It is found that the finite element trial functions pass the test
procedure described previously, i.e. they permit exact recovery of six rigid body movements
and the six unit deformation states defined in Table 1.

3.3 Generalized forces and displacements

It facilitates our finite element analysis if the concept of generalized forces and displace-
ments is introduced. Referring to the variational functional (2-12), we consider that the line
integral around the element boundary € comprises two parts I, and I,, thus

fRTUds=1,+1,, )
where
I, =~2 RNWN+§Kst-§Mn—ds ? (3-24)
and
Iy= f N,U, ds +§ N,.U, ds.
J

In eqn (3-24),, the concentrated “‘corner” forces Ry, the Kirchhoff shear force K, and the
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normal bending moment M, along a typical side 12 are given by

RN = Mnr nh
K, =M, oMy (3-25)
an s

M, = M, cos’ y;, + M, sin’ y,, + M,, sin 2y,

where the superscripts + and — refer to the concurrent sides at an element corner N and where
the twisting moment

M, =3M, - M,)sin 2y,, + M,, cos 2y,,. (3-26)

For a linear distribution of bending and twisting moments, such as eqn (3-14), we define

e (l —E)Mu ! ("2)“’ 3-27)

K.=K7,

where the quantities M2, M2' and K2' are generalized forces. Including the corner forces Ry,
the triangular element has a total of 12 generalized forces which are given by the column vector

G, =(RIKIMIMYRK?MPMPRKIMIM ). (3-28)

Substituting eqns (3-28) into the eqn (3-24), for I, gives
I,=G,'s., (3-29)
where the generalized displacements corresponding to the generalized forces of eqn (3-28) are

the components of a column vector g,, thus

=W,
(3-30)

e[
O (= Py (T P

Similarly, the normal and shearing stress resultants along the typical side 12 are given by

N, = N, cos? y;;+ N, sin’ y,, + N,, sin 2y,,,
yi2+ N, sin? v, + N,, sin 2y, l 331)

an = %(Ny - Nx) sin 27]2 + ny cos 2712v

so that the generalized forces for the constant stress resultants defined in eqn (3-18) are a total
of six given by the column vector

Ge = (NZNZNENENINIT. (3-32)
The eqn (3-24); for I, is then
= Gy'gs. (3-33)

where the corresponding generalized displacements are the components of a column vector gg:
h ha

g' = f U,ds, gi= I U ds, etc. (3-34)
0

SS Vol. 18, No. 9—B
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The column vectors G, and G are respectively related to the coefficients ; of the bending
and twisting moments in eqn (3-14) and to the coefficients 8; of the stress resultants in eqn
(3-18) as follows

G,=B"a,

3-35
Gg = CTB. ( )

Here, the components of the (9 x 12) matrix B and the (3 X 6) matrix C are calculated using
eqns (3-25), (3-26) and (3-31) and the column vectors a and B are

a= (a|aza3ﬂ4050607a30'9)r,
r (3-36)
B =(BiB:8By)".
3.4 Treatment of distributed loads
Distributed loading on a plate is assumed to take three forms: an applied pressure p*(x, y)
normal to the plane of the plate and two components of in-plane body force X*(x, y), Y*(x, y).
These effects are included in the analysis by the integral

j[p*TUdA=IIX*dedy+II Y*dedy+jfp‘§dedy, (3-37)
A A s a

which appears in the functional of eqn (2-12).

In the case of the basic finite element model, described in Section 4.1, the integrals on the
r.h.s. of eqn (3-37) are calculated using the trial functions for the interior displacements U, V,
W given in eqns (3-15) and (3-8). However, the augmented displacements model and the
equilibrium model described in Sections 4.2 and 4.3 are better treated by an alternative method
which avoids the algebraic complications of two-dimensional trial functions for U and V
without damaging their capability to recover the polynomial displacements of eqn (3-6). The
method is valid if the prescribed body forces X*, Y* are derived from a potential function
Q(x, y). Fortunately, this condition applies to most types of body force which occur in practical
problems, e.g. gravitational force, centrifugal force, magnetic force. Accordingly, the membrane
stress resultants are re-defined as

Nx = Bl + ﬂ’
N, =g+, (3-38)
ny = BL

where the potential function Q for the body forces is given by

0 _
ax X
50 (3-39)
. yx
3y Y*.

Equations (3-38) and (3-39) ensure that the equations of equilibrium in the plane of the plate are
satisfied exactly by the trial functions, i.c.

E. + X*=0,
E,+Y*=0,

(3-40)

where E, and E, are given by eqns (2-3), and (2-3),. Consequently, the first and second integrals
on the r.h.s. of eqn (3-37) do not appear in the functional of eqns (2-12) and there is no



Improved finite element models for analysis of thin plates 151

requirement for finite element representations of the intérior membrane displacements U and
V.

Finally, we note that the equilibrium mode! for stretching, described in Section 4.3, requires
extra generalized displacements for the exact transmission across element boundaries of the
stress resultants defined in eqn (3-38). The expressions for these generalized displacements can
be derived only when the form of the potential function 1 is known.

4. MATRIX FORMULATION OF VARIATIONAL EQUATIONS

It is convenient to express the functional of eqn (2-12) in a new matrix notation before
formulating the variational equations which are used in the numerical solution. For simplicity of
presentation, it is assumed here that a normal pressure p?% is the only component of the body
force applied to the plate; the in-plane components of the body force vector p* are taken to be
zero, i.e. X* = Y* = 0. The effect of non-zero body forces X*, Y* is included in the analysis by
the methods described in Section 3.4.

Using eqns (3-14) and (3-18), the first two integrals of the functional are written

%fj MT¥MdA = %a "H,.a,
I
@1
! I f NT$NdA = iBTH,.8,
A

where H,, is a (9% 9) matrix and Hg, is a (3 X 3) matrix; the column vectors a and B are given
by eqn (3-36). The third integral is defined as a scalar quantity A which is written in two
alternative forms as follows

1.7
A=} f f 07RO dA = { B",’i Ngsq., “
a

where g, is the column vector of connection quantities in eqn (3-7), and N, is a (9 X 9) matrix
whose elements are linear functions of the stress coefficients 8. The three components of the
column vector L, are quadratic functions of the connection quantities in g,. The effect of the
applied normal pressure is calculated using eqn (3-8) for the normal displacement; the result is

I f ptWda=gq,"P*, (4-3)
A

where P* is a (9 x 1) column vector.
The functional of eqn (2-12) is now written in matrix notation as

7. =ta"H,a +iBTHeB - A- I, - I+ 8,"G% + g, "G4 + q,"P*, (4-4)

where the boundary integrals I,, I, are defined in eqns (3-24), and (3-24), and the generalized
displacements g,, g, are defined in eqns (3-30) and (3-34). The column vectors G%, G% contain
prescribed values of the generalized forces defined in eqns (3-28) and (3-32).

4.1 Basic finite element model
The basic trial functions of egns (3-11), (3-12) and (3-16) are used to calculate the
generalized displacements defined in eqns (3-30) and (3-34). The result is written

ga = Tqﬂs}
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where T is a (12X 9) matrix and S is a (6 X 6) matrix. The boundary integrals I, and I, are given
by eqns (3-29), (3-33), (3-35) and (4-5) as

L =a"(BT)q.,
I, = BT(CS)q, } “-6)

Using eqns (4-5) and (4-6) the element functional =, in eqn (4-4) becomes

m.=1a"H,,a +38 " Heef — A— aT(BT)q, - BT(CS)qs + q."TTG% + q,"S"G% + q,"P*.

47
Considering arbitrary variations da, 88, 6q, and &g, the first variation &, is
7, = 8a"[H,oa — (BT)q,]+ 887 [HgoB — L, —(CS)q,)
- 84,7 [Nggqa +(BT)a - TTG* - P*1- 8,7 (CS)"B - STGY).
(4-8)

The sum of the first variations 8=, from all the finite elements is set to zero as required for
an application of the variational principle presented in Ref. [11]). But, we recall that the
variations da and 88 are local to each element because the stress resuitants and stress couples
are assumed independently from the connection quantities; their coefficients in eqn (4-8)
therefore vanish, i.e.

H..a =(BT)q,
4-9)
HBﬁB = La + (CS)qB.

Inverting eqns (4-9) and substituting for a and B in eqn (4-8) gives an expression for &, in
terms of the vectors of connection quantities g, and gz only. Summing 8w, over all elements e
and setting the result to zero provides the variational equations for the basic finite element
model, viz:

2 [(BT)TH;J(BT)+ Ngglg, = 3 {T"G*% + P*},

4-10)
2 (CHTH;(Cge = X {STGE—(CSTH L, },

where the components of the column vectors g, and g, are constrained to satisfy the
displacement boundary conditions of eqn (2-11),. The numerical solution of these nonlinear
equations is discussed in Section 5.

4.2 Augmented displacements model

The augmented membrane displacements of eqns (3-23) are used to calculate the generalized
displacements defined in eqns (3-34). The boundary integral I, in eqn (4-6), than takes the
expanded form

Iﬂ = BT(CS)qB + r. (4'1 l)

where the quantity I includes the extra terms to permit exact recovery of inextensional bending
deformations with constant curvatures and twist. It has two alternative forms as follows

1 T
- iqa MBqu
r {BTRa' 4-12)

Here, the elements of the (9 X 9) matrix Mg, are linear functions of the stress coefficients g; and
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the three components of the column vector R, are quadratic functions of the connection
quantities in q,. '
Substituting eqn (4-11) into eqn (4-4) and following a similar procedure to Section 4.1 gives

Haaa = (BT)qa' } 4_13
Hﬂﬂp = (CS)qB + La + Ra ) ( )

The variational equations for the augmented displacements model are

3 ((BT)THM(BT)+ Ngg + Mgg — M%51q, = D, {T"G% + P*},
¢ ! ‘ 4-14)
S ((CS)THH(CS)ag =X, {STGE - (CSTH3H(L, + R.)},

where the matrix M3, has an identical form to M;,, but its elements contain contributions from
the prescribed boundary tractions G} instead of the stress coefficients 8. The components of
the column vectors q, and g are again constrained to satisfy the displacement boundary
conditions of eqn (2-11),. Equations (4-14) are no more difficult to solve numerically than eqns
(4-10).

4.3 Equilibrium model for stretching

An alternative method which has been proposed(12) for recovering inextensional bending
deformations involves the use of an equilibrium model for the stretching action in a plate. This
approach uses generalized displacements, such as those defined in eqn (3-34), as connection
quantities on the side of an element instead of the corner connection quantities defined in eqn
(3-7),. The generalized displacements are point Lagrangian multipliers to enforce equilibrium of
the membrane stress resultants between adjacent finite elements and to satisfy the traction
boundary conditions at the plate edge. Clearly, they can take any numerical values consistent
with the requirements for inextensional bending without damaging their réle in enforcing stress
equilibrium.

For an equilibrium model with constant stress resultants, as defined in eqns (3-18), the
column vectors a and B are determined from

Haaa = (BT)qm }
HoeB = L, + gy @15)
and the appropriate variational equations are
3 [(BT)'HL.(BT)+ Ngglq. = 3 {T"G% + P*},
‘ ‘ (4-16)

g [CTHClgs =2 {G5-CTHR)L,}.

These equations become identical to eqns (4-10) if eqn (4-5), is used to substitute for g, in the
analysis. The latter equations are also used to calculate the constraints on the components of g,
in eqn (4-16) as specified by the displacement boundary conditions of eqn (2-11),.

An equilibrium model for stretching with constant stress resultants is a natural choice for a
development from the basic finite element model described in Section 4.1. But, although the
element stiffness matrix CTH 3} C is well-behaved, it is known that the global stiffness matrix

2 CTHpggC can be singular even with the rigid body movements constrained. In this instance,

the variational eqns (4-16), are rank-deficient and they require special numerical techniques for
solution. A physical interpretation of this behaviour is that the finite element model corresponds
to a mechanism. This difficulty can be avoided completely by using a more sophisticated
equilibrium model for the stretching action. Reference 17 gives details of a suitable triangular
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equilibrium element with linear stresses; the generalized displacements along the typical side
12 are

LY P

g,,'=j (l_ﬁ;) U, ds, gi= f (ﬁ;) U, ds,
0 0 4-17)

ty P!

3 _ 3V 4. ERY7
L2 of (‘ 1,,)”""* & f (Iu)u‘ds'

1]

where the coordinate s is measured from node 1. The relevant variational equations are
identical in form to eqns (4-16) with the matrix and vector quantities re-defined in an
appropriate way.

It is an unfortunate fact that the equilibrium model has connection quantities on the element
sides, thus increasing the number of equations involved in a numerical solution. This alternative
offers a less attractive approach for practical applications then the augmented displacements
model described in Section 4.2,

5. NUMERICAL SOLUTION

In the sequel, we specifically consider the numerical solution of eqns (4-10), but the solution
of eqns (4-14) and (4-16) follows a formally identical procedure. It is known from eqn (4-2) that
the vector L, is a quadratic function of the components of g,, the vector of connection
quantities associated with the bending degrees-of-freedom of an element. Equations (4-9), and
(4-10), therefore show that the stress coefficients 8; are also quadratic functions of the
components of g,. It follows that eqn (4-10), is a cubic polynomial function of the bending
degrees-of-freedom taken from all the finite elements e, because the ¢lements of the matrix Ng;
are linear in 8. Now, assuming that a given finite element mesh has a total of Ny bending
degrees-of-freedom x; (i =1,..., Ny), eqns (4-10) can be rewritten symbolically as

Kig+L = p1, (5-1)
where f is the quartic polynomial,
f=3Khxx; + i xixxx, (5-2)

It is to be noted that the summation convention is assumed to hold for repeated suffices {, j, k,
[=1,..., Ny which occur in eqns (5-1) and (5-2) and in all subsequent equations in this section.
The coefficients K§, K+ hyyx,x, and P% form the elements of two matrices and a column
vector respectively which are identified from eqn (4-10), as

3 (BT)'H (B =[K}),

&

Z [Ngsl=[K i+ bz, 5-3)

S TG+ P*}={P*}.

¢

The quantities on the r.h.s. of eqns (5-3) also have the following standard interpretation: K¥ are
the elements of the linear elastic stiffness matrix for small displacement bending; K/; are the
elements of the geometric stiffness matrix calculated from the membrane stresses in the
undeformed configuration -of the plate; hy, are constant coefficients which result from the
nonlinear coupling between the bending and stretching deformations of a plate; PY are the
components of a vector containing applied normal loading.
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5.1 Computational procedure

Following the development described in Ref. [12], it is convenient to conceptualize the
solution of eqn (5-1) as the problem of finding the stationary points of a nonlinear energy
function

F=4K%xx;+ f- Pix,. (5-4)
Equation (5-1) thus corresponds to a position of equilibrium defined by the stationary condition

aF1ax; = 0. For a position of stable equilibrium the stationary value is a minimum and the
Hessian matrix, given by

PF1 [0, 3 ] ]
[3x;3x,-] - [K“' *axax | G-5)

is positive definite.

The following numerical iterative method has been proposed[12] for calculating the un-
known quantities x*' at the iteration r+ 1 in terms of the known quantities x;” at the iteration
r.

izL] - m__L ._[__ ,
[K" te ax,3x; P P axax, i X 5-6)

where p is a constant coefficient and all the partial derivatives are evaluated at the iteration r.
This procedure is a generalization of Newton's method which is obtained by putting p= 1.
Theoretical studies show that the value p =3 gives an iterative procedure with the valuable
property of convergence to stable positions of equilibrium only.

However, the iterative procedure is not immediately suitable for numerical computation in
the form of eqn (5-6). It is necessary to substitute the function f from egn (5-2) into eqn (5-1) to
get

(K3 + pK i+ 3phxx/1x]* = [(p — DK §+ (3p — Dhyux/x1x/ + pt. 57
A significant computational simplification is now effected by introducing the matrix
{K il = [Kl + hka-fel (5-8)

because it is apparent that the elements K7 of this matrix can be calculated in an identical way
to the elements K} but with current values of the membrane stresees corresponding to the
deformed configuration of the plate. Equation (5-8) is then used to eliminate the term A, x.x,
from eqn (5-7) and the iterative procedure takes the final form

[K$—20K) +3pK2)xi* = [~ 2pK )+ 3p — DK3)x/ + P*. 59

When using eqn (5-9) it is necessary to update the elements K}, K? and the degrees-of-freedom
x/ at each cycle of an iterative solution. The elements K7, retain fixed values throughout the
computations. The solution strategy for the numerical examples presented in Section 6 involves
using the above iterative procedure embedded in an incremental parameter technique, but the
details of this are not given here.

5.2 Starting values for post-buckling analysis

The analysis of the post-buckling behaviour of initially flat plates requires starting values x°
for the bending degrees-of-freedom because there are no applied normal loads P* on the r.hs.
of eqn (5-9). In the present paper the starting values are taken to be

x’ = agm, (5-10)
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where 7; are the components of the eigenvector 5 corresponding to the initial buckling mode
and where the amplitude g, is to be determined. It is conventional to normalize the eigenvector
so that gy, = L.

The nonlinear energy function is obtained by substituting eqn (5-10) into eqn (5-4) with
P*%*=0to get

F =1aX (K + K })nm; +ao* hyumimmen. -1

Now, if the intensity of the applied loading in the plane of the plate is u times the critical value
for initial buckling, we have

(uK§+ Kjm; =0, (5-12)
and it follows from eqn (5-11) that
F = 3a’(1 - w)K§mim; + dao* hyamimymn. (5-13)

The values of a, at which F takes stationary values are given by
aF o 2
" aol(1 = p)Kgmin; + ao” Ry mimyment] = 0. (3-14)

Appropriate values for the amplitude a, are the solutions of eqn (5-14), viz: either

= 0$
or
(5-15)
2 K ?['_)iﬂ,‘
ay = (“ - l) h .
ikt TN T

The value a, = 0 corresponds to x < 1, i.e. the applied loading is equal to or less than the critical
value, and the plate remains flat. For post-buckling problems we have i > 1 and g, is calculated
from eqn (5-15),, noting the computational simplification for hymm, given by eqn (5-8). The
value of u which corresponds to the applied loading is obtained, together with the eigenvector
components 7, by an eigenvalue solution of eqn (5-12) using the method described in Ref. [9].

6. NUMERICAL EXAMPLES

The numerical examples are selected to provide a comparison between the basic finite
element model and the augmented displacements model presented in Sections 4.1 and 4.2
respectively. The examples include various kinds of elastic behaviour typical of the large
displacement bending and post-buckling of thin plates. They are designed to investigate the
effects of including simple inextensional bending deformations in the finite element trial
functions. Both finite element models have identical connection quantities and hence there is no
significant difference in the computing times required for assembling and solving the finite
element equations during the iterative solution.

6.1° Study of convergence with mesh refinement

The convergence characteristics of the two finite element models are studied using alter-
native mesh refinements for a simple plate problem with an exact analytic solution. The data for
the problem are given in Fig. 1. There are no displacement constraints in the plane of the plate
except to restrain rigid body movements. The mid-plane of the plate is bent into a cylindrical
surface, with generators paraliel to the clamped edge, by a constant shear force per unit length
V* applied at one end. A linear distribution of normal bending moment per unit length
M, = vM, is required along the remaining two edges to give the correct boundary conditions for
the cylindrical bending; in the exact solution these moments do no work because the generators
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Fig. 1. Convergence study of tip deflections of rectangular cantilever plate using alternative mesh

refinements.

are straight lines. The normal displacement of the mid-surface is given by

%=%( )(3a 0L, 6-1)

where A is the thickness of the plate and

ER

b=xi-m

(6-2)

is its flexural rigidity. The value of V* is chosen to give a normal displacement W/h =5 at the
end x = a; this is the largest end-displacement which can be obtained using the basic finite
element model before convergence problems affect the iterative solution. The augmented
displacements model can attain much larger values of end-displacement without any difficuity
with convergence.

The problem is analysed using two alternative schemes for refinement of the finite element
mesh. Refinement scheme A increases the number of elements in the x-direction only.
Refinement scheme B increases the number of elements in the x-direction and the y-direction
simultaneously, i.e. a “‘consistent” refinement where the finest mesh includes the nodal points
of all the coarser meshes. Scheme A has 2a elements for each level of mesh refinement, where
n is the number of elements along the longitudinal edges y = = b/2, while scheme B has 2n?
elements. For the finest mesh, with n =4, scheme A has eight elements and scheme B has
thirty-two elements.

The results of the analyses are presented as a graph of end-displacement plotted against n.
The augmented displacements model shows very rapid convergence to the exact solution with
mesh refinement: the numerical solutions for schemes A and B are identical for any level of
mesh refinement. By contrast, the basic finite element model shows slow convergence towards
the exact solution and there is a marked difference between refinement schemes A and B. It is
paradoxical that the latter scheme gives worse results with a much larger number of elements.
Clearly, the basic finite element model is sensitive to the scheme of mesh refinement which is
adopted and this is generally undesirable.

6.2 Clamped square plate under central force

This example concerns a thin square plate loaded by a concentrated normal force at the
centre. The edges are rigidly clamped both against normal displacement and rotation and
against membrane displacements. The latter boundary conditions restrict movement in the
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plane of the plate and the applied ioading tends to be resisted to an increasing extent by
membrane forces which develop by stretching of the plate mid-surface.

At sufficiently high values of the applied load the behaviour of the plate is equivalent to that
of a loaded membrane: in general there is a cubic relationship[2] between the central force and
its corresponding normal displacement. The exact solution of a square membrane under a
central force is unknown, but an analytic solution is available[I8) for a circular membrane
under a central force which is exact when Poisson’s ratio » =3} In this case the normal
displacement is given in terms of the central force P by

v-[E -] ©

where r is the radial coordinate measured from the centre of a circular membrane of radius R.
Equation (6-3) provides a fairly accurate representation of the load-displacement behaviour at
the centre of a square plate of side length a if we put R = g/2. The appropriate relationship is

e

Pad’ 41r(W)3 ‘ (6-4)

Er” 3 \h /.
which is plotted in Fig. 2.

A graph of central force against central displacement is shown in Fig. 2 for two sets of
results obtained using the basic finite element model and the augmented displacements model
respectively. Taking account of symmetry conditions, one-eighth of the plate is analysed using
16 elements. As anticipated, both sets of results lie on the same nonlinear curve because there
is no inextensional bending action and hence the finite element idealizations are essentially the
same. Now, the flexural rigidity of the plate has a significant influence on the behaviour at low
values of the central force. The finite element models therefore predict an initially stiffer
response than the circular membrane solution which neglects the flexural rigidity. But the
results correctly show that the stiffness of the plate soon becomes identical to that of the
circular membrane as the magnitude of the central force is increased. This is in marked contrast
to the constant stiffness predicted by the small displacement theory.

PLATE DATA
vstfd ¢
P

h=0.01
Pa? a/h=100

w—— | E % (0.92 x 1O*

En* \
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Fig. 2. Clamped square plate under central force
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6.3 Rhombic plate under comer forces

This example is designed to investigate the effects of explicitly including simple in-
extensional bending deformations in the finite element trial functions of the augmented
displacements model. The problem concerns the large displacement bending of a thin rhombic
plate under the action of corner forces P, as shown in Fig. 3. The plate is supported by a rigid
bar across its shorter diagonal, where the normal displacement is consequently zero, to
eliminate any tendency to deform into an anticlastic surface at small values of the loading. This
latter mode of deformation is associated with small displacement behaviour and it is irrelevant
in the present context.

At large normal displacements the plate deforms into a cylinder with generators parallel to
the shorter diagonal, apart from a narrow “boundary layer” close to each of the plate edges
where there is a small deviation in normal displacement from the true cylinder. Here, the
deformation is not inextensional: there is a membrane force in the boundary layer parallel to
the plate edge and proportional to the deviations in normal displacement. However, a fairly
accurate estimate of the normal displacements can be obtained from an analysis[11] which
assumes that the deformation is entirely inextensional. In this case, the normal displacement of
the mid-surface is a linear function of the applied load at a corner, viz:

= m cot 6, 6-5)

W_PpP
h
where h is the thickness of the plate, D is the flexural rigidity and 6 is the half-angle between
the concurrent edges at one of the corners of the plate (see Fig. 3).

Using conditions of symmetry, one quarter of the plate is analysed using a mesh of 16
elements both for the basic finite element model and for the augmented displacement model.
The results are plotted in Fig. 3 as graphs of corner force against corner displacement. It is
clear that the response calculated with the basic model is an unacceptable result: the plate is
found to have an increasing resistance to the application of the corner forces. On the other
hand, the linear response calculated with the augmented displacements model is a quite
satisfactory solution which agrees with the prediction of inextensional theory.,

6.4 Rectangular plate under plane compression
The final example is concerned with the finite element analysis of the elastic post-buckling
behaviour of plates. The problem is to calculate the response of a thin simply-supported

PLATE DATA
Pa2 0.3
t—— vs .
Eh4 h=0.01
4 INEXTENSIONAL alh=500
THEORY E=10.92x10¢
tan™' 6=3/4
S| x BASIC MODEL - kil
s AUGMENTED [
al MODEL
3t
2 3
| -
) il e A I 4 > wlh
0 2 4 6 8 10 12

Fig. 3. Diagonally supported rhombic plate under corner forces.
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Fig. 4. Simply supported rectangular plate under plane compression.

rectangular plate under plane compression as shown in Figs. 4 and 5. The longitudinal edges of
the plate are considered to be held in a rigid frame which completely restrains normal
membrane displacements but freely permits the existence of tangential membrane displace-
ments. Each transverse end of the plate is compressed by a force P applied through a rigid
end-block, whose movement is denoted by the displacement U. In the pre-buckling range, the
plate is assumed to remain flat and the force-displacement response is linear with constant
stiffness E. At the initial buckling point the plate develops normal displacements, the mode
shape having a single “buckie” in the longitudinal and transverse directions respectively. In the
post-buckling range, the in-plane stiffness of the plate (denoted by E*) decreases until
secondary buckling occurs and the plate snaps into a new mode shape. In this case the mode is
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5 b =1.0 I |4ax4 32
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b/h = 100
i
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- BUCKLING MODE
E*x0.2E
@ SECONDARY
BUCKLING JAUNAY SECONDARY
INITIAL BUCKLING y HIMIT POINT} LONGITUDINAL
{BIFURCATION R Py e BUCKLING MODE
_________ E*<Q.BE [ 3
! LN = b TRANSVERSE
1 Bx4 MESH BUCKLING MODE
{  RIGID ]
{ END~BLOCK [
1
| l,, a -I NRIGID FRAME
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Fig. 5. Simply supported rectangular plate under plane compression.
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found to have three buckles in the longitudinal direction. The maximum normal displacement is
of the same order of magnitude as the plate thickness.

The finite element results for the basic model and the augmented displacements model are
presented in Figs. 4 and S respectively. Half the plate is analysed, because of symmetry, using
three finite element meshes with progressive refinement in the longitudinal direction only. The
plate is compressed by increasing the end-displacement U, the associated force P is deter-
mined by integration of the longitudinal stress resultants at the end of the plate which are taken
from the finite element analysis. The critical values Pcg and Uy at the initial buckling point are
calculated using the eigenvalue solution described in Ref. [9].

Curves of P/Pcg against Ul Uy are plotted in Fig. 4 for the basic finite element model. They
show an obviously incorrect result where the calculated post-buckling response becomes stiffer
with mesh refinement. It is also difficult to identify the position of the secondary buckling point
because of the irregular pattern of the curves in this region. By contrast, the corresponding
force-displacement curves for the augmented displacements model plotted in Fig. § provide a
more credible numerical solution. Here, the post-buckling response is found to become less stiff
with mesh refinement, as usually expected from this type of finite element analysis. Moreover,
clear evidence of smooth convergence characteristics is provided by the regular sequence of
curves in the region of the secondary buckling point. It is a noteworthy practical demonstration
of the beneficial effect of including simple inextensional bending actions in the finite element
trial functions.

7. CONCLUSIONS

The present paper is concerned with the development of finite element models for accurate
analysis of the class of plate problems covered by the nonlinear theory of von Kdrman. In this
context, triangular finite elements are presented for the large displacement bending and
post-buckling analysis of thin plates. The formulation is based upon a general variational theory
for large displacement bending which is free from restrictive subsidiary conditions on the stress
and displacement variables. This offers a wide scope for the selection of finite element trial
functions to model the particular physical actions identified as crucial to the successful
calculation of large displacement behaviour. Indeed, it is shown that basic trial functions can be
easily adapted to allow exact recovery of the important inextensional bending deformations in
addition to rigid body movements and constant states of membrane strain. Further develop-
ments to deal with more complicated types of physical action, such as boundary layer effects,
are also feasible using this type of approach.

The paper presents a selection of numerical examples which include various kinds of elastic
behaviour typical of the large displacement bending and post-buckling of thin plates. It is found
that a notable improvement in performance is achieved using a finite element model with simple
inextensional bending deformations inciuded in the trial functions. Yet there is no significant
increase in the computational effort required for a numerical solution when this feature is
incorporated in the analysis. In all cases where the effect of refining the finite element mesh is
investigated, the results obtained with this type of finite element model exhibit rapid and
smooth convergence to the final solution. This provides a first validation of the fundamental
requirements proposed for accurate finite element analysis of nonlinear elastic plate bending.
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